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Foreward

In the last few years use of composite material is increased because their
mechanical properties outperform the ones of classical material thanks to
the ratio between sti�ness and weight. The most useful application �elds
are in aeronautics, automotive and naval where there are critical operating
conditions (for instance: high temperature) and low weight is required. Con-
sidering the performance of the composite they are substituting the other
material as aluminum, or steel in many applications, above all, because their
�bers can be oriented along the stress directions.

Due to their high end application Defect Detection is a main activity
in composite making and maintenance, in particular Non Destructive Tests
(NDT) is highly wanted. It is widely used in the mechanical industries to
monitor own products both along the production process and at the end of
it: integrity of mechanical structure is most wanted by the factories. Above
all NDT is used in the maintenance operation, because the residual life of
the products should be estimated, without using invasive test; i.e. changing
geometric or physical properties. Here attention is posed on the detection of
delamination defect both at the end of production line and during operation,
due to fatigue or other load condition, requiring to determine both the in-
plane defect position and extension.

In the present work a method is developed that, using the vibration data
gathered from the surface measurement of displacements or velocities, is able
to analyze them and to assess the position and length of the structural anoma-
lies of a beam or shell layered structure.

The key idea is to use a standard linear Finite Element Model (hereafter
FEM) of the structure to reproduce the balance e�ect between the inertial
and elastic forces in the free vibrating area of the structure.

The linear matrix application, representing the FEM, will map the vector
space of the measured nodal displacements to the vector space of the applied
external nodal forces. From a theoretical point of view the resultant forces
must be zero in the nodes under free vibration condition and as a consequence
the applied external nodal force vector must be a null vector.

A gap between the mathematical model and the real physical model in
an homogeneous structure will anyway be present and will results in a force
vector di�erent from zero with a constant in space mean error distribution.
This non-zero value represents the unbalanced forces between the inertial
and elastic component due to the model uncertainty. For this reason the
resulting vector is called Unbalanced Force Vector.

The nodal components of the Unbalanced Force Vector which show a peak,
respect to the mean value, highlights the area where it is possible to guess the
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presence of a deviation from the standard mechanical or geometric charac-
teristics.

To reduce the error associated with the di�erentiation of the measured dis-
placements a Mixed Finite Element approach has been adopted to decrease to
a minimum the degree of the derivative present in the mathematical operator
representing the dynamic vibration of the structure. The performance of the
Mixed Finite Element Method in dynamic condition has been tested versus
standard Finite Element Method. The Mixed formulation clearly outper-
forms the standard formulation in the stress and internal action calculation
in modal or transient analysis.

The need for a variety of delamination condition has been highlighted to
better test the method, giving rise to the development of a virtual laboratory
which overtakes the practical di�culties in the realization of a controlled
delamination defect into the beam or shell structure.

Following the previous considerations two main advantages can be high-
lighted:

1. no requirements for accurate knowledge of the mechanical characteristic
of the structure

2. no needs of contact measurements (except for the excitation area) or
part dis-assembling

The results obtained support the hypothesis at the basis of the method. In
fact in almost all the test cases the mean unbalanced force �noise� value to
the peak value ratio is alway less then 20%, allowing for a clear identi�cation
of the possible defected area. Moreover it has been possible to associate a
clear pattern with the presence of delamination defect.

The thesis is divided in two part:

1. the �rst part describes the mathematics used to model the physics of
the natural phenomenon

2. the second part describes the laboratory measurement method used to
verify the FEM model used to generate the measurement data and the
post-processing technics used to detect the anomalies present in the
structure.

The �rst part is divided into two chapters:

1. one concerns the mathematical model used to simulate the structural
behaviour of the beam/shell
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2. the other describe the deduction of the numerical model.

The second part is divided into four chapters:

1. the laboratory experiment used to validate the FEM model

2. the FEM model used to reproduce the virtual laboratory

3. the comparison between laboratory tests and FEM calculation

4. the Unbalanced Forces Mapping Method,

5. and the last one the results of the test of the unbalanced force method.
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Chapter 1

The Thick/Thin Shell Structural
Model

To better understand the e�ect of the presence of anomalies or delamination
it is necessary to develop a mathematical model for the structure composed
by two or more �laminas� bonded together to form a laminated composite.

This non-homogeneous anisotropic plate should now be consider a whole
structure and the main aim is to de�ne its response to external loads as a
whole rather then a multicomponent structure.

This development will start with the de�nition of the stress-strain rela-
tionship and then the introduction of the classical equations for the �exural
behaviour of thin/thick plate, then adding consideration about the shear
e�ects on the de�ection surface and concluding with the in�uence of the
principal failure mechanism, the �delamination�

1.1 Governing Equations for a Composite Plate

Under Bending Deformation

The governing equations are obtained by combining the constitutive relations
and the equilibrium equations. The constitutive relations take under consid-
eration of anisotropic behaviour of the component materials in the form of
the stress-strain relationship, while the equilibrium equations consider the
way in which the laminas are bonded together to form the structure.

1.1.1 Equilibrium Equations

As common in the small deformation analysis the following assumption has
been hold valid in the following developments:

8
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(a) Reference frame (b) Vertical equilibrium

(c) Rotational equilibrium

Figure 1.1: equilibrium diagram for vertical translation and rotation

• initial and �nal con�guration can be considered identical from the point
of view of the equilibrium equations

The �gure 1.1 shows an in�nitesimal element of the plate structure with the
accompanying reference frame in which the following position has been done:

in which:

Mx =

∫ h
2

−h
2

σxzdz

My =

∫ h
2

−h
2

σyzdz

Mxy =

∫ h
2

−h
2

τxyzdz



Mechanical Engineering PhD

Universita' Politecnica delle Marche

Pag. 10 of 109

Section 1.1

Vxz =

∫ h
2

−h
2

τxzdz

Vyz =

∫ h
2

−h
2

τyzdz

V ∗
xz = Vxz +

∂Vxz

∂x
dx

V ∗
yz = Vyz +

∂Vyz

∂y
dy

M∗
x = Mx +

∂Mx

∂x
dx

M∗
y = My +

∂My

∂y
dy

M∗
xy = Mxy +

∂Mxy

∂x
dx

It is worthwhile to recall that:

Mx is the moment vector parallel to y axis

My is the moment vector parallel to x axis

In the previous equation the plane z = 0 is assumed to be placed in the middle
surface of the plate, and the mechanical and geometrical characteristics of
the structure are symmetric respect to that plane. This assumption allow to
satisfy the condition for decoupling the �out of plane deformation� from the
�in plane deformation�.

From a general point of view the reference surface, in the presence of
bonded laminas with di�erent mechanical characteristic or dimensions, could
not be e�ectively de�ned to avoid bending and normal stresses coupling due
to the fact that one parameter z0, the position of the reference surface, should
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satisfy the condition that constant strain state, through the thickness, have
to results in zero bending and torsional moment, which results in:

N∑
k=1

∫ zk

zk−1

(Ck
11ε

0
x + Ck

12ε
0
y)zdz = 0

N∑
k=1

∫ zk

zk−1

(Ck
21ε

0
x + Ck

22ε
0
y)zdz = 0

N∑
k=1

∫ zk

zk−1

Ck
44γ

0
xyzdz = 0

in which:

Ck
ij the sti�ness matrix of the k − th lamina

N the number of laminas

ε0
x constant deformation in the x direction

ε0
y constant deformation in the y direction

γ0
xy constant shear in the x− y plane

In the same way the internal action can be rewritten as:

Mj =
N∑

k=1

∫ zk

zk−1

σjzdz j = x, y Mxy =
N∑

k=1

∫ zk

zk−1

τxyzdz (1.1)

Vxz =
N∑

k=1

∫ zk

zk−1

τxzdz Vyz =
N∑

k=1

∫ zk

zk−1

τyzdz (1.2)

in which zkare the coordinate of the plane bounding each lamina.
The �gure 1.1 (b) and (c) show the equilibrium diagram for the translation

and rotational forces and momentum. The summation of force in the z
direction has to be zero:

∂Vxz

∂x
dxdy +

∂Vyz

∂y
dydx + qdxdy = 0

simplifying:
∂Vxz

∂x
+

∂Vyz

∂y
= −q (1.3)
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the same results for the moment summation around x and y axis, in which
third order in�nitesimal quantity has been dropped:

Vyzdxdy − ∂My

∂y
dydx− ∂Mxy

∂x
dxdy = 0

simplifying the incremental quantity:

Vyz = +
∂My

∂y
+

∂Mxy

∂x
(1.4)

and:

Vxzdydx− ∂Mx

∂x
dydx− ∂Mxy

∂y
dydx = 0

after simplifying:

Vxz =
∂Mx

∂x
+

∂Mxy

∂y
(1.5)

The substitution of equation 1.4 and 1.5 into equation 1.3 determines the
following equations:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
= −q(x, y) (1.6)

1.1.2 Constitutive Equations

The constitutive equations, connecting the deformation to the internal ac-
tions, are obtained combining:

1. the stress-strain relationship, connecting strains and stresses induced
by the deformation displacements

2. the kinematic relationships connecting the structure displacements with
the material strains.

1.1.3 Stress-Strain Relationship

From elementary elasticity, the generalized Hooke's law can be used to con-
nect the stress to the strain in a material:

σij = Cijmnεmn (1.7)

in which:

εij the linear deformation tensor
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Cijmn the Sti�ness tensor

σmn the stress tensor

From hereon it is better, in the view of the Finite Element formulation, to
use a vector notation rather then a tensorial one and the engineering strain.
So the strain vector can be obtained in the following manner:

ε =


εx

εy

εz

γxy

γyz

γxz

 =


ε11

ε22

ε33

2ε12

2ε23

2ε13


in the same guise for the stress:

σ =


σx

σy

σz

τxy

τyz

τxz

 =


σ11

σ22

σ33

σ12

σ23

σ13


Following the previous position the sti�ness tensor can be represented by a
matrix:

C = [Cij]

The matrix C is, in general, fully populated but according to usual assump-
tions the 36 elements of the matrix can be reduced. The assumptions used
hereafter are:

1. orthotropic Material

2. plane stress

The orthotropic assumption can reduce to 12 the non-zero elements, in fact if
the shear deformation cannot induce normal stresses the matrix C assumes
the following form:

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (1.8)
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The plain stress assumption require the following non zero vector stresses
component:

σ =

 σx

σy

τxy


as a consequence the sti�ness matrix reduces to a 3x3 giving the following
stress strain relationship:

σ = Cε

in detailed form:  σx

σy

τxy

 =

 C11 C12 0
C12 C22 0
0 0 C44

 εx

εy

γxy

 (1.9)

If the principal orthotropic material directions l − t, are coincident with the
x− y coordinate system, the matrix elements can be connected to the usual
material parameters:

El Young modulus in the l direction

El Young modulus in the t direction

νlt Poisson coe�cient

νtl Poisson coe�cient

Glt Shearing modulus of elasticity

with the following relations:

C11 =
El

1− νltνtl

C12 =
Etνlt

1− νltνtl

(1.10)

C22 =
Et

1− νltνtl

C44 = Glt

If the material principal directions are not parallel to the coordinate system
x − y axis it is necessary to apply a transformation to the stress and strain
vectors and to the sti�ness matrix. This transformation can be deduced from
the second order tensor transformation of the following type:

Aij = tikakltjl

in which:
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aik is the transformation matrix obtained by the direction cosine of the trans-
formed axis

Transforming the previous relation to the vector form it is possible to obtain
for the transformation matrix:

T =

 cos2α sin2α 2sinα · cosα
sin2α cos2α −2sinα · cosα

−sinα · cosα sinα · cosα cos2α− sin2α

 (1.11)

The sti�ness matrix is the result of the following relationship:

Cglo = T−1CT (1.12)

in which:

C is the sti�ness matrix in the material principal directions

Cglo is the sti�ness matrix in the coordinate system axis

The matrix Cglo is fully populated and the equation 1.12 is transformed to: σx

σy

τxy

 =

 c11 c12 c13

c12 c22 c23

c13 c23 c33

 εx

εy

γxy

 (1.13)

1.1.4 Kinematic Relations

Two di�erent approach has been used to describe the relation between the
displacements and the strain:

• thin plate condition (Euler-Bernoulli theory [Calcote 1969])

• thick plate condition (Mindlin-Reissner theory[Auricchio 1994] )

The principal di�erence between the two is the di�erent assumption about
the shear deformation in the plane orthogonal to the plate surface.

1.1.4.1 Thin Plate Condition

Whitout loosing in generality now From here on it is considered that the
plate is composed by symmetric laminas respect to the middle surface. This
assumption allows for the decoupling of the in-plane and out-of-plane de-
formation into the resolving equations. The small deformation theory has
been applied to derive the deformation tensor from the structure displace-
ments. The following assumptions are used for the description of the thin
plate deformation from displacements [Calcote 1969]:
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w

z

x

Deflection Surface

θ

Figure 1.2: Physical quantities in the plate de�ection

a) points laying on a normal to the plate middle surface will still lay
on the normal to the deformed middle surface

b) the elongation of a line drawn along the thickness, normal to the
middle surface can be neglected

Under the action of a load normal to the middle plane of the plate, the
structure deformation can be sketched according to �gure 1.2.

According to hypotesis b) the displacement in the z direction can be
described by the displacement of the middle surface which is function of the
x, y coordinate only:

w = w(x, y)

Following assumption a) the points with positive z coordinate the displace-
ments in the x direction are negative and proportional to the normal rotation
θ and can be expressed by:

u = zθy

v = − zθx

w = w (1.14)

According to hypothesis a) results:

θx =
∂w

∂y

θy = − ∂w

∂x
(1.15)
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The essence of the previous relation is the in�nitely shear sti�ness of the
plate. This statement should be considered in a relative way respect to the
bending sti�ness, the correct assertion should be: the bending sti�ness is
several order of magnitude less the the shear sti�ness. If, for any reason,
the shear stifness decreases to a value comparable to the bending one the
relationship represented by equation 1.15 is no more valid. According to the
previous hypotesis the displacement can be expressed by:

u = −z
∂w

∂x

v = −z
∂w

∂y

Considering the assumption b) and the small deformation strain tensor def-
inition:  εx

εy

γxy

 = −z

 w,xx

w,yy

2w,xy

 (1.16)

in which the following convention has been used for the coma:

w,xx = ∂2w
∂x2

For a whole vectorial notation it is possible to write:

ε = −zw′

in which:

w′ =

 w,xx

w,yy

2w,xy


Inserting equation 1.16 into the general stress-strain relationship of equation
1.9 it is possible to connect the structure displacements to the internal stress,
then inserting the resulted relations into equations 1.1 and 1.2 the �nal con-
nection between displacements and internal action is obtained. The relation
can be written in the following vectorial form:

M =
N∑

k=1

∫ zk

zk−1

Ck
glo(−z)w′ · z · dz

in which:
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M =

 Mx

My

Mxy


sorting out constant quantity from the integral sign one obtains:

M =

(
−

N∑
k=1

Ck
glo

∫ zk

zk−1

z2 · dz

)
·w′

then performing the integration:

M =

(
−

N∑
k=1

Ck
glo

1

3
z3
∣∣zk

zk−1

)
·w′

or equivalently: Mx

My

Mxy

 = −

 D11 D12 D13

D12 D22 D23

D13 D23 D33

 w,xx

w,yy

2w,xy

 (1.17)

where the elements of the matrix D are de�ned as follow:

Dij =
1

3

N∑
k=1

ck
ij(z

3
k − z3

k−1)

in which:

ck
ij is the sti�ness matrix (equation 1.13) in the global reference frame of the

k − th lamina

zk, zk−1 are the coordinates of upper and lower planes bounding the k − th
lamina

In full vectorial notation:
M = −D · w′

The deformation described in �gure 1.2, pure rotation about the reference
surface, can induce in-plane internal action like Nx, Ny and Nxy, that are
de�ned by:

N =

 Nx

Ny

Nxy

 =
N∑

k=1

∫ zk

zk−1

Ck
glo(−z)w′ · dz
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Integrating along the thickness reads:

N =

(
−

N∑
k=1

Ck
glo

1

2
z2
∣∣zk

zk−1

)
·w′

The previous integral is equal to zero only if the plate is symmetrical about
its reference surface, both for structural characteristic Ck and for geomet-
rical dimension zk. Inserting equation 1.17 into 1.6 it is possible to get the
resolving equation:

−D11w,xxxx − 4D13w,xxxy − 2(D12 + 2D33)w,xxyy +

−4D23w,xyyy −D22w,yyyy = −q (1.18)

The equation ?? allows to solve the structural problem of the de�ection of
a plate from known mechanical characteristic and loads. It is worth, for
the following analysis, to highlight that while the equilibrium equation 1.6 is
always satis�ed by any plate con�guration the equation ?? is satis�ed only if
the ratio between the bending sti�ness and the shear sti�ness are very low.
If the latter happens the following relation should be considered true:

−D11w,xxxx − 4D13w,xxxy − 2(D12 + 2D33)w,xxyy +

−4D23w,xyyy −D22w,yyyy + q 6= 0

This can happen for example when some defect in lamination of the ply
reduce the bonding between the relative sliding of the laminas reducing the
shear sti�ness and allowing for comparable values between shear and bending.
The equation ?? consider static equilibrium, in the case of dynamic excitation
the external and elastic forces should be equal to the inertial ones:

−D11w,xxxx − 4D13w,xxxy − 2(D12 + 2D33)w,xxyy +

−4D23w,xyyy −D22w,yyyy + q = ρA
∂2w

∂t2
(1.19)

in which ρais the mass per unit area of the plate. If the principal material
directions of each ply correspond to the x− y coordinate axis the coe�cients
disappear:

D13 = 0 D23 = 0

and the equation 1.19 is further simpli�ed to:

−D11w,xxxx − 2(D12 + 2D33)w,xxyy −D22w,yyyy + q = ρA
∂2w

∂t2
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1.1.4.2 Thick Plate Condition

The needs to consider more general conditions lead to the Mindlin-Reissner
theory [Auricchio 1994]which drops the condition a) of section 1.1.4.1, but
holding b) one, assuming that points laying on a straight line before the
deformation remain on a straight line.

According to the previous assumption the points laying along the normal
to the reference surface before the deformation lay no more on the normal to
the deformed surface. For this reason the relations, expressed by equations
1.15, have to be written in a more general form.

According to the sign conventions represented in �gure 1.3 it is possible
to de�ne:

θy rotation of a line normal to the reference surface around the y
axis

θx rotation of a line normal to the reference surface around the x
axis

γxz angular shear deformation in the x− z plane

γyz angular shear deformation in the y − z plane

w,x x component of the normal to the deformed surface

w,y y component of the normal to the deformed surface

and drawn the following relationships:

θy = γxz − w,x

θx = −γyz + w,y (1.20)

Using the rotation θx and θy it is possible to express the displacements using
the equation 1.14:

u = zθy

v = −zθx

w = w

The derivation of the previous equation leads to the following quantity:

K =

 θy,x

−θx,y

θy,y − θx,x

 =

 γxz,x − w,xx

−(γyz,y + w,yy)
γxz,y − w,xy − (γyz,x + w,yx)


in which:
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Figure 1.3: shear and bending deformation relation
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K is the curvature vector

The curvature vector can be easily connected to vector of the internal mo-
ments, M , using the constitutive relationship 1.9:

M = Db ·K (1.21)

The same relation can be obtained for the shear, de�ning:

V =

[
Vxz

Vyz

]
and:

Γ =

[
γxz

γyz

]
Recalling equations 1.7 and 1.8 it is possible to write the following vector
relation: [

τxz

τyz

]
=

[
C66 0
0 C55

]
·
[

γxz

γyz

]
Assuming that the shear deformation γxz and γyzare constant along the plate
thickness the de�nition of equations 1.2 can be used to construct the matrix
relationship between vertical shear force and shear deformation.

Vxz =
N∑

k=1

∫ zk

zk−1

Ck
66γxzdz Vyz =

N∑
k=1

∫ zk

zk−1

Ck
55γyzdz

Finally:
V = Ds · Γ (1.22)

in which:

Ds =

[
d11 0
0 d22

]
and

d11 =
N∑

k=1

Ck
66(zk − zk−1) d22 =

N∑
k=1

Ck
55(zk − zk−1)

Now the structural problem can be solved, indeed there are 10 unknowns:

• the three scalar quantities w, θx, θy

• the 7 components of the vector quantities Γ, M , and V

and 10 independent equations:
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• the equilibrium equations 1.3, 1.4 and 1.5

• the compatibility equation 1.20

• the constitutive equations 1.21 and 1.22.

It is worthwhile highlight how the equations 1.18 and 1.19 will result applying
the previous approach. Combining equation 1.21 into 1.6 that means using
the Mindlin-Reissner curvature relationship into the equilibrium equations it
results:

[D11(γxz,x − w,xx) + D12(γyz,y − w,yy) + D13(γxz.y + γyz,x − 2wxy)]xx +

2 [D13(γxz,x − w,xx) + D23(γyz,y − w,yy) + D33(γxz.y + γyz,x − 2wxy)]xy

[D12(γxz,x − w,xx) + D22(γyz,y − w,yy) + D23(γxz.y + γyz,x − 2wxy)]yy = −q

Separating the two contributions, the pure bending from the pure shear one,
it is possible to get:

−D11w,xxxx − 4D13w,xxxy − 2(D12 + 2D33)w,xxyy +

−4D23w,xyyy −D22w,yyyy +

(D11γxz + D13γyz),xxx + 3D23γyz,xyy +

(2D33 + D12)(γyz,xxy + γxz,xyy) +

+3D23γyz,xyy + (D22γyz + D23γxz),yyy = −q (1.23)

Comparing equation 1.23 with equation 1.18 it is straight to draw that when
the structure is no more in�nitely sti� in shear deformation equation 1.18 is
no more satis�ed due to the presence of the following term:

Fs(γxz, γyz) = (D11γxz + D13γyz),xxx + 3D23γyz,xyy +

+(2D33 + D12)(γyz,xxy + γxz,xyy) +

+3D23γyz,xyy + (D22γyz + D23γxz),yyy (1.24)

If the principal coordinate system of the ply is parallel to the global one the
expression simplify to read:

Fs(γxz, γyz) = (D11γxz + D13γyz),xxx +

+(2D33 + D12)(γyz,xxy + γxz,xyy) +

+(D22γyz + D23γxz),yyy

The previous expressions represent the force due to shear e�ect and cannot
be neglected when the shear sti�ness is comparable to the bending one. For
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the purpose of the present research it is important to highlight that if the
shear sti�ness is locally reduced, for the presence of incorrect bonding or for
any other reason, the displacements �eld measured will not satisfy, in the
defected area, the equation 1.19, due to the presence of the term described in
equation 1.24.
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Chapter 2

The Mixed Finite Element
Method for Shell/Beam Structure

In numerical approximation methods the primary variables are always more
accurate then the derived one, because they are usually obtained as deriva-
tive of the primary ones. From an engineering point of view the stress inside
the material is of main interest and usually it is obtained deriving the dis-
placements, for this reason the family of Mixed Finite Elements has been
developed to increase the accuracy of the more interesting variables. In the
Mixed Finite Elements formulation the resulting expression of the total en-
ergy of the structural system is describer using lower degrees of derivation.
For plate and beam the Mixed Element method assumes as primary variable
the displacements and the bending moment, instead of rotations.

2.1 The Equations

The matrixes of the mixed �nite element draw from a di�erent choice of the
governing equation. In the classical �nite element analysis the matrixes are
deduced from the governing equation in which the only unknowns are the
displacements of the structure, in the approximation procedure the shape
functions are build using nodal displacement and rotation as unknown pa-
rameter. The stresses are then obtained deriving the displacement and for
example in the beam theory two level of di�erentiation are needed to obtain
the moment.

Considering the beam structure as example, in the mixed formulation the
moment is assumed as primary variable as the displacement. The �nal gov-
erning equation should be slightly modi�ed to take this change into account,
and in the following this formulation is presented.

26
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2.2 The Compatibility Equation

The compatibility equation considers the relationship between bending mo-
ment and beam deformation. Hereafter, without loosing in generality from
a numerical point of view, the following assumptions have been made:

• the mechanical characteristics of the lamina do not vary along the axis
of the beam

• the thickness and principal axis orientation do not vary along the axis
of the beam

• the z axis is a symmetry axis for the cross section

No loose in generality is due to the previous assumption from a numerical
point of view in which a continuous structure should be divided into �nite
piece-wise constant stretch.

According the usual theory of beams and using the sketch of �gure 2.1
the axial displacements are described by the following:

u = z · θy (2.1)

in which:

θy rotation of a line normal to the x axis before the deformation around the
y axis

u the displacement in the x direction

According to the Euler-Bernoulli theory the only non-zero deformation tensor
component is:

εx = u,x (2.2)

Using equation 2.1, 2.2 and the Hooks law the axial stress inside the beam
is:

σx = Ek · z · θy,x

in which:

Ek is the Young modulus of the k − th ply

To get the simplest form of the governing equations it is necessary to uncouple
the bending from the axial e�ect. To this aim, according with the previous
assumptions, the x axis of the reference coordinate system is placed along
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x
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Figure 2.1: In�nitesimal Beam deformation

the line connecting the barycentre of each cross section, determined by the
following relationships:

N∑
k=1

bk

∫ zk

zk−1

Ekz · dz = 0 (2.3)

in which:

bk width of the k − th ply

According to the equation 2.3 no axial force is induced by a rotation θy, in
fact:

Nx =
N∑

k=1

bk

∫ zk

zk−1

Ek · z · θy,xdz = 0

on the contrary no bending moment will come frome an axial deformation:

Mx =
N∑

k=1

bk

∫ zk

zk−1

Ekε0
x · zdz = 0

The symmetry condition for the z axis ensures no coupling between torsion
and shear in the x − z plane. The condition stated by equation 2.3 will be
easy ful�lled if the distribution of the laminas is symmetric respect to the
x− y plane. Following the previous discussion the bending moment is:

Mx =
N∑

k=1

bk

∫ zk

zk−1

Ek · z2 · θy,xdz
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Figure 2.2: Force diagram sketch

Considering a rectangular cross section the following quantity can be de�ned:

E = b
N∑

k=1

∫ zk

zk−1

Ek · z2 · dz (2.4)

leading to the �nal relation:

Mx = Eθy,x (2.5)

in which:

Mx is the bending moment in the x− z plane

The convention for positive As is showed in �gure assuming a right handed
reference system, with the xaxis the beam central axis, a positive rotation
about the y axis correspond to a negative

2.2.1 The Equilibrium Equations

The second equation is the second Newton law of dynamics. The rotational
equilibrium reads:

−Vxzdx−Mx + Mx +
∂Mx

∂x
dx = 0
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after simpli�cation:

Vxz =
∂Mx

∂x
(2.6)

and the translation in the z direction:

−Vxz + Vxz +
∂Vxz

∂x
dx + q(x) = Ac

∂2w

∂t2

after simpli�cation:
∂Vxz

∂x
+ q(x) = Ac

∂2w

∂t2
(2.7)

in which:

w is the transverse beam displacement in the z direction

Vxz is the beam shear

q(x) is the applied load per unit length

Ac = ρA is the mass per unit length of the beam

Combining equations 2.6 and 2.7 it is possible to obtain:

∂2Mx

∂x2
+ q(x) = Ac

∂2w

∂t2
(2.8)

Assuming no shear deformation the θy variation is:

θy,x = −∂2w

∂x2

According to the previous statements the system of governing equations re-
sults the following one: {

Mx + E ∂2w
∂x2 = 0

∂2M
∂x2 + q(x)− Ac

∂2w
∂t2

= 0
(2.9)

The boundary condition shall be added to system 2.9 to uniquely determine
the solution. Usually two di�erent sets of conditions are de�ned:

• essential boundary conditions that are applied to the unknown
function in the form w = bw(t) or M = bm(t) at one or both the beam
ends, where bw(t)and bm(t) are known function;

• natural boundary conditions that are applied on the share force
and on the rotation in the form Vxz = bv(t)or θy,x = bθ(t) at one or
both the beam ends, where bv(t) and bθ(t) are known function;
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2.2.2 The Shear E�ect

If the shear e�ect has to be taken into account the �rst equation of 2.9 should
be modi�ed considering the following hypothesis:

• the shear deformation is assumed to be uniform in the cross section of
the beam and is called γxz

As a consequence the relation between the shear stress τxz and the internal
action Vxz assumes the following form:

Vxz = b

∫ zN

z1

τxzdz = µ
N∑

k=1

bkc

∫ zk

zk−1

Gk
xzγxzdz

in which:

b is the cross section base

µ is the cross section shape factor taking into account for the di�erence
between real shear deformation variation along the thickness and the
constant assumption

Gk
xz is the shear modulus in the x− z plane of the k − th lamina

Using the assumption of constant shear deformation it is possible to write:

G =
N∑

k=1

bk

∫ zk

zk−1

Gk
xzdz (2.10)

the �nal relation is:
Vxz = µGγxz (2.11)

Inserting equation 2.6 into 2.11 reads:

∂M

∂x
= µGγxz (2.12)

Now deriving respect to x the shear deformation de�nition:

γxz,x = θy,x + w,xx (2.13)

in which coma stand for derivation, and performing the substitution of equa-
tion 2.5 and 2.12 it is possible to write:

1

µG

∂2M

∂x2
=

M

E
+ w,xx
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leading to the system of governing equation:{
Mx

E
− 1

µG
∂2Mx

∂x2 + ∂2w
∂x2 = 0

∂2Mx

∂x2 + q(x)− Ac
∂2w
∂t2

= 0
(2.14)

in which the shear deformation e�ect has been taken into account. The
boundary conditions are applied in the same manner as in section 2.2.1.
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2.3 Finite Element Model

The numerical solution of the system of equations 2.9 can be obtained via the
usual Finite Element technique where the transverse displacement function w
and the bending moment Mx are assumed as unknowns in both formulation
with and without the shear e�ect. For a coherent approximation theory it is
necessary to state a little bit more formally the previous problem as follow:

�nd Mx(x), w(x) ∈ C2 on the interval [0, L]satisfying the boundary con-
ditions and the following di�erential equation:

Mx

EI
− 1

µG
∂2M
∂x2 + ∂2w

∂x2 = 0
∂2M
∂x2 + q(x)− Ac

∂2w
∂t2

= 0
w(0, t) = 0

θy(0, t) = bθ(0, t)
Mx(L, t) = 0

Vxz(L, t) = bv(t)

(2.15)

The previous statement de�nes the problem with the classical formulation.
As consequence it is not always possible to �nd a solution for the problem
due to the restriction imposed to the degree of continuity of the solution.

2.3.1 The Weak Formulation

Finite Element Method, instead of a classical formulation of the problem,
starts usually from less restrictive set of possible solution to �nd then in this
new set the approximated solution, this is called �weak formulation�. The
unknown function can be approximated in a broader set then the classical
one C2. This approximated set, called H1, is the set of all functions with
at least the �rst derivative square integrable. The next step is to de�ne a
subset H1

h ⊂ H1 constructed using the base function Ni(x). In the following
development the subscript i connects the base function to the node of the
elements used to discretize the domain by the following:

Ni(x) is di�erent from zero only on the elements that are attached to or
contain the node i

The unknown function can then be expressed by:

Mh(x) = MiNi(x) wh(x) = wiNi(x) i = 1, 2, ..n (2.16)

in which the repeating indeces summation convention has been used and:

Mh approximated function of the bending moment

wh approximated transverse displacement
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Mi value of the bending moment at node i

wi value of the transverse displacement at node i

n total number of nodes

The above relations if substituted in system 2.14 give rise to the following
residues: {

Mh

EI
− 1

µG
∂2Mh

∂x2 + ∂2wh

∂x2 = R1(x, t)
∂2Mh

∂x2 + q(x)− Ac
∂2wh

∂t2
= R2(x, t)

Now the Finite Element Method looks for a solution of the problem in the
subset H1

h weighting the previous residues with trial functions equal to the
Nj(x). This approach was introduced by Galerkin and named �Galerkin
method� after him. The aim is to represent the physical problem described
by the system of equations 2.15 using a di�erent class of solution functions
and it is formulated as follow:

�nd Mh(x), wh(x) ∈ H1
h on the interval [0, L] satisfying the boundary

conditions wh(0, t) = 0, θh
y (0, t) = 0 and the following system of equations

for each vh ∈ H1
h:{ ∫ L

0
Mh

EI
vhdx−

∫ L

0
1

µG
∂2Mh

∂x2 vhdx + wi

∫ L

0
∂2wh

∂x2 vhdx + (θh
y − bθ(t))v

h
∣∣
0

= 0∫ L

0
∂2Mh

∂x2 vhdx +
∫ L

0
q(x)vhdx− Ac

∫ L

0
∂2wh

∂t2
vhdx− (V h

xz − bv(t))v
h
∣∣L = 0

(2.17)
in which:

(a) the repeated indexes summation convention is used

(b) the boundary condition, expressed through the functions bθ(t)
and bθ(t), for the shear force (last term in the left hand member
of the second equation) and for the rotation (last term in the left
hand member of the �rst equation), are applied in a weak form
called Natural Boundary Conditions

(c) the boundary conditions for the displacement and the moment in
a strong form, Essential Boundary Conditions.

As clearly stated by system 2.17 the Natural Boundary Conditions will be
enforced by the solution of the linear system of equations whilst as it results
from de�nition 2.17 Essential Boundary Conditions will be enforced by the
appropriately choice of the nodal values.

The relation expressed by equation 2.17 is satis�ed if it is true for each
base function, leading to:
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{
Mi

EI

∫ L

0
NiNjdx− Mi

µG

∫ L

0
∂2Ni

∂x2 Njdx + wi

∫ L

0
∂2Ni

∂x2 Njdx− (θh
y − bθ(t))Nj

∣∣
0

= 0

Mi

∫ L

0
∂2Ni

∂x2 Njdx +
∫ L

0
q(x)Njdx− Ac

d2wi

dt2

∫ L

0
NiNjdx− (V h

xz − bv(t))Nj

∣∣L = 0
j = 1, ..n

where use of the equation 2.16 has been done. Applying integration by parts
it is possible to highlight the presence of the boundary conditions:

Mi

EI

∫ L

0
NiNjdx + Mi

µG

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx− Mi

µG
∂Ni

∂x
Nj

∣∣L
0

+

−w
∫ L

0
∂Ni

∂x

∂Nj

∂x
dx + wi

∂Ni

∂x
Nj

∣∣L
0
− (θh

y − bθ(t))Nj

∣∣
0

= 0

−Mi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx + Mi

∂Ni

∂x
Nj

∣∣L
0

+
∫ L

0
q(x)Njdx+

−Ac
d2wi

dt2

∫ L

0
NiNjdx− (V h

xz − bv(t))Nj

∣∣L = 0

Referring to equation 2.13 and 2.6 it is possible to write:

θh
y =

Mi

µG

∂Ni

∂x
− wi

∂Ni

∂x

V h
xz = Mi

∂Ni

∂x
Except for the boundary node the base function The approximated system
of equations �nally is:

Mi

EI

∫ L

0
NiNjdx + Mi

µG

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx− wi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx

− (Mi

µG
− wi)

∂Ni

∂x
Nj

∣∣∣L
0
− (θh

y − bθ(t))Nj

∣∣
0

= 0

−Mi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx +

∫
q(x)Njdx +−Ac

d2wi

dt2

∫ L

0
NiNjdx

+ Mi
∂Ni

∂x
Nj

∣∣L
0
− (V h

xz − bv(t))Nj

∣∣L = 0

and 
Mi

EI

∫ L

0
NiNjdx + Mi

µG

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx− wi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx+

+ θh
yNj

∣∣
0
− (θh

y − bθ(t))Nj

∣∣
0
− θh

yNj

∣∣L = 0

−Mi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx +

∫ L

0
q(x)Njdx− Ac

d2wi

dt2

∫ L

0
NiNjdx+

+ V h
xzNj

∣∣L − (V h
xz − bv(t))Nj

∣∣L − V h
xzNj

∣∣
0

= 0

Considering now the boundary conditions the shape function is zero, for the
displacement at x = 0, with Nj(0, t) = 0 ∀ j and for the moment at x = L
with Nj(L, t) = 0 ∀ j, canceling out the relevant terms. Finally the system
of equations reads:

Mi

EI

∫ L

0
NiNjdx + Mi

µG

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx− wi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx+

+ bθ(t)Nj|0 = 0

−Mi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx +

∫ L

0
q(x)Njdx− Ac

d2wi

dt2

∫ L

0
NiNjdx+

+ bv(t)Nj|L = 0

(2.18)
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The previous equation give rise to a system of 2n linear equations the whom
solution determines the nodal values of the displacement and moment.

2.3.2 The Shape Function and the Finite Element Ma-

trix

It is useful to write in matrix form equation 2.18 :

Kb ·m + Ks ·m−Kn ·w = −θ (2.19)

−Kn ·m−Mi
d2

dt2
w = −Q− V (2.20)

in which:

(Kb)ij = 1
EI

∫ L

0
NiNjdx Bending compliance matrix

(Ks)ij = 1
µG

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx Shear compliance matrix

(Kn)ij =
∫ L

0
∂Ni

∂x

∂Nj

∂x
dx Nodal matrix

(Mi)ij = Ac

∫ L

0
NiNjdx Mass matrix

Qj =
∫ L

0
q(x)Njdx Distribute load Vector

mi = Mi Vector of the bending moment nodal values

wi = wi Vector of the transverse displacements nodal values

θ Vector of the boundary condition applied to the end beam rotations

V Vector of the boundary condition applied to the end beam shear force

The matrix elements can be obtained once the function Ni of the Finite
Elements has been chosen. Here it is presented, as an example, the case of
polynomial function of 2th degrees with the following expressions:

N1(x) =

(
x− L

2

)
(x− L)

L2

2

N2(x) =
x (x− L)
L
2

(
L
2
− L

)
N3(x) =

x
(
x− L

2

)
L
(
L− L

2

)
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in which:
l is the length of the �nite element
The �rst derivative of the shape functions are:

d

dx
N1(x) =

2
(
x− L

2

)
L2

+
2 (x− L)

L2

d

dx
N2(x) = −4 (x− L)

L2
− 4x

L2

d

dx
N3(x) =

2
(
x− L

2

)
L2

+
2x

L2

Now it is straitforwardstraightforward to obtain the matrix:

Kb =
1

EI

 2L
15

L
15

− L
30

L
15

8L
15

L
15

− L
30

L
15

2L
15


Ks =

1

µG

 7
3L

− 8
3L

1
3L

− 8
3L

16
3L

− 8
3L

1
3L

− 8
3L

7
3L


Kn =

 7
3L

− 8
3L

1
3L

− 8
3L

16
3L

− 8
3L

1
3L

− 8
3L

7
3L


Mi = Ac

 2L
15

L
15

− L
30

L
15

8L
15

L
15

− L
30

L
15

2L
15


Q =

 L
6

2L
3
L
6


The two vector θ and V have all null element but the �rst and last ones
associated to the boundary values. The matrix equations 2.19 and 2.20 can be
combined to use only one matrix equation by de�ning the following coe�cient
matrixes:

K =

[
Kb + Ks −Kn

−Kn 0

]
M =

[
0 0
0 Mi

]
L =

[
−θ

−Q− V

]
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and for the unknown vector:

u =

[
m
w

]
leading to the following usual matrix equation for the discrete system:

K · u−M
d2

dt2
u = L (2.21)

The form of equation 2.21 is very useful for static problems where the equa-
tion reduces to:

K · u = L

and the boundary conditions can be applied in the usual form with the same
subroutines used for any others Finite Element program. In the dynamic
case a di�erent formulation has to be used due to the singularity of the mass
matrix M .

2.3.3 Solution with �Displacement Only Method�

The systems of equations 2.19 and 2.20 can be solved one at a time, deducing
the moment from the �rst system as a function of the displacement and then
substituting in the second system, as hereafter described (with no lack in
generality an for the sake of simplicity no shear e�ect is considered):

m = Kb
−1 · (Kn ·w − θ)

−Kn ·Kb
−1 · (Kn ·w − θ)−Mi

d2

dt2
w = −Q− V (2.22)

The solution of system of equations 2.22 requires that the matrix Kb is non
singular as it is assured by the linearly independent shape functions. The
second matrix equations of 2.22 now has only displacement degrees of freedom
and the matrix Mi is non singular too for the same reason stated above.
Usual methods for structural time integration can now be used considering
the following sti�ness matrix: and for The governing system of equations can
now be written in the following form:

−K ·w −Mi · d2

dt2
w = L (2.23)

in which:

K = Kn ·Kb
−1 ·Kn the sti�ness matrix
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L = −Q− V − (Kn ·Kb
−1 · θ) the load vector

Some attention shall be placed in considering the boundary conditions, that
allows to make the sti�ness matrix non-singular. This topic will be discussed
in the following section.

2.3.3.1 Applying End Rotations

In this case the boundary conditions are expressed imposing the rotations at
both ends in the form:

θy(0) = bθ1(t)

θy(L) = bθ2(t)

This means that the moments at the same ends are unknown. The application
of system 2.22 is straightforward: the vector θ is completely known, all
elements zero but the �rst and the last ones:

θ =


bθ1(t)

0
...

−bθ2(t)

 (2.24)

The nodal moment values are expressed by:

m = Kb
−1 · (Kn ·w − θ) (2.25)

Substituting in the second of the equation 2.22 the �nal form is obtained:

−K ·w −Mi
d2

dt2
w = −Q− V − (Kn ·Kb

−1 · θ) (2.26)

For the application of displacement boundary conditions the procedure is
outlined hereafter in section2.3.3.3.

2.3.3.2 Applying End Moments

More attention has to be payed in the case of end moments constrain that
can be expressed as:

Mx(0) = bm1(t)

Mx(L) = bm2(t) (2.27)

Now the end rotations are unknown and the boundary condition, expressed
by equations 2.27, have to be added to system 2.30 to solve the problem.

Di�erent solution techniques have to be used depending on the type of
analysis, they will be described in the next sections.
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Static Analysis In this case equations 2.27 have to be added to system
2.23 to obtain the solution in term of displacements and end rotations. The
two boundary conditions can be introduced into the �rst and last equations
of the �rst matrix equation of system2.22, they read:

(Kb
−1 ·Kn)1j ·wj −Kb

−1
11 θ1 = bm1(t) j = 1, 2..n

(Kb
−1 ·Kn)nj ·wj −Kb

−1
nnθn = −bm2(t) j = 1, 2..n (2.28)

The two equations in 2.28 can now be added to the system 2.26 as the initial
and �nal rows along with the two additional columns, deduced from the
matrix equation 2.22:

(Kn ·Kb
−1)j1 · θ1 j = 1, 2..n

(Kn ·Kb
−1)jn · θn j = 1, 2..n

The resulting sti�ness matrix reads:

K =

 −Kb
−1
11 (Kb

−1 ·Kn)1i −Kb
−1
1n

(Kn ·Kb
−1)j1 −(Kn ·Kb

−1 ·Kn)ji (Kn ·Kb
−1)jn

−Kb
−1
n1 (Kb

−1 ·Kn)ni −Kb
−1
nn

 (2.29)

The system can now be written, referring to equation 2.22 (the minus sign of
the sti�ness matrix is put inside the sti�ness matrix de�nition) considering
the static conditions:

K ·

 θ1

w
θn

 =

 0
L
0

 (2.30)

in which:

L = −Q− V is the load vector

Dynamic Analysis Full Time Integration In the case of dynamic anal-
ysis the general discrete equation 2.23 can be used with some slight modi�-
cations to the sti�ness and mass matrix. The sti�ness matrix is exactly the
same determined in equation 2.29, for the mass matrix the contribution of
the end rotations is nil so the modi�ed matrix is easily obtained:

Mw =

 0 0 0
0 Mi 0
0 0 0


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The �nal equation reads:

−K ·

 θ1

w
θn

−Mw
d2

dt2

 θ1

w
θn

 =

 0
−Q(t)− V (t)

0

 (2.31)

The numerical solution of equation 2.31 will be calculated using the standard
time integration techniques for structural dynamics, the Wilson-θmethod is
the one used in this case. Here only the main results for the development
of the method will be addressed and for a deeply discussion the reader is
reminded to [Hilber 1976].

The method is based on the assumption that the acceleration varies lin-
early inside a time step. The time step is comprised between the two tempo-
ral instants tk and tk + θ∆t. The acceleration is expressed by the following
equations:

ẍk+θ = (1− θ)ẍk + θẍk+1 (2.32)

in which:

ẍ second time derivative of the unknown vector of equation 2.31

tk+1 = tk + ∆t discrete time

Integration of acceleration in the interval [tk, tk + θ∆t] gives the velocity and
the displacement as polynomial expression of θ∆t [Hilber 1976, Paz 1985]:

ẋk+θ = ẋk + θ∆t[(1− δ)ẍk + δẍk+θ] (2.33)

xk+θ = xk + θ∆tvk + θ2∆t2[(
1

2
− α)ẍk + αẍk+θ] (2.34)

Substitution of the expression for the kinematics quantities in matrix equa-
tion 2.31 reads:

K · xk+θ + Cẋk+θ + Mw · ẍk+θ = F k+θ

in which:

F k+θ =

 0
Qk+θ + V k+θ

0


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Expressing discrete acceleration and velocity as a function of discrete dis-
placement through equations 2.32, 2.33 and 2.34 leads, after re-arraying of
parameters, to the �nal expression:

[a0Mw + b0C + K] · xk+θ = F k+θ +

+Mw [a0xk + a1ẋk + a2ẍk] +

+C [b0xk + b1ẋk + b2ẍk] (2.35)

in which:

a0 = 1
αθ2∆t2

a1 = 1
αθ∆t

a2 = 1
2α
− 1

b0 = δ
αθ∆t

b1 = δ
α
− 1

b2 = ( δ
2α
− 1)θ∆t

The equation 2.35 can be used to determine the unknown vector at time
instant tk+θ once the whole kinematic states are known at time instant tk.
Then using equations 2.32 it is possible to calculate the acceleration at time
tk+1 = tk + ∆t:

ak+1 = c0(xk+θ − xk)− c1ẋk − c2ẍk

in which:

c0 = a0

θ

c1 = a1

θ

c2 =
(

1
2αθ

− 1
)

Then using equations 2.33 and 2.34 with θ = 1 it is possible to calculate
the displacements and the velocities at time tk+1 = tk + ∆t. If θ = 1 the
algorithm is the classical Newmark. The following worth characteristics of
the algorithm can be listed :
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Stability for unconditional stability, in choosing the time step ∆t, the fol-
lowing inequalities must hold [Hilber 1976]:

δ ≥ 1

2

α ≥ δ

2

θ ≥ 2α

1− 2α

Accuracy for every values of θ the order of accuracy is two if [Hilber 1976]:

δ =
1

2

Dissipation No numerical damping for [Hilber 1976]:

δ = 0.5

α = 0.25

and the better values for optimal dissipation characteristics, for
both low and high frequency is [Hilber 1976]:

α =
(δ + 0.5)2

4

Damping The numerical solution results to be under-damped if the follow-
ing inequalities hold:

δ ≥ 1

2

α ≥ (δ + 0.5)2

4

The better behaviour in terms of frequency induced dissipation
for unconditionally stable algorithm is for (damping increasing
with frequency):

θ ≈ 1.4

Example of application of the integration algorithm will be showed in the
next sections.
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2.3.3.3 Applying End Displacements or Shear Forces

The solution of both matrix equations 2.26 and 2.30 require the applica-
tion of displacements boundary condition that shall be applied following the
standard Finite Element procedures:

1. if the displacement is imposed the relevant system row is taken out
from the solution procedure and the unknown values of the shear force
will be determined after the time integration

2. if the shear force is imposed the known values is set on the right hand
side of equation 2.26

When the displacements are calculated the equation 2.25 allows for the de-
termination of the nodal values of the moment.
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length 10 m
Young Modulus 2.1E+11 N

m2

density 7250 Kg
m3

width 0.1m
height .25m

Table 2.1: Geometrical and Mechanical data

2.4 Numerical Tests

A simple model, for which analytical solution is available, has been chosen
to test the performance of the Mixed Finite Element formulation. On that
model, eigen mode extraction and time integration analysis have been run
comparing the result of the Mixed Finite Elements (heron called MFE), the
Classical Finite Elements (heron called CFE) and if available analytical so-
lution.

2.4.1 Eigen Mode Extraction

For the sake of simplicity, without losing in generality, a uniform rectangular
cross section beam with free end translations and restrained end rotations
is considered. For the MFE equation 2.26 has been solved, for the CFE the
solution has been obtained using the general purpose Finite Element Program
ANSYS and reference for the analytical solution can be found in [Paz 1985].
The following geometrical and mechanical data has been used:

The beam has been discretized using a Finite Element size equal to 2.5m
resulting in 5 node, a 2nd degree polynomial shape function for the MFE, and
the usual 3rd degree polynomial shape function for the CFE. Eigen frequency
results, for the various methods, are reported in table 2.2. They show a
good agreement between both numerical methods and the exact solution
considering that only 9 degree of freedom are present for the MFE and 10
for the CFE. A maximum relative error, on the third mode, of 3.3% for the
MFE formulation and 1.37% for the CFE. The higher value for the MFE can
be easily explained with the lower degree of the approximating polynomial
for the displacement unknowns used respect to the CFE.

This kind of behaviour is completely reversed considering the stresses that
is in this case the bending moment value. The approximating polynomial is
of order two in the MFE formulation and the shape function is continuous,
instead for the CFE the approximating polynomial is of order one and the
shape function is discontinuous crossing the element border. As it is clearly
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Mode nth Exact MFE ANSYS

1 0.0 0.2247e-05 0.2008E-06
2 6.1011 6.1042 6.0992
3 24.4045 24.588 24.449
4 54.9101 56.739 55.677

Table 2.2: Eigen Frequency results
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Figure 2.3: Bending moment for the 1st mode. Space coordinate (m) on
abscissa and Moment on ordinate (Nm)
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Figure 2.4: Bending moment for the 2nd mode. Space coordinate (m) on
abscissa and Moment on ordinate (Nm)
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Figure 2.5: Bending moment for the 3rd mode. Space coordinate (m) on
abscissa and Moment on ordinate (Nm)

showed by �gures 2.3, 2.4 and 2.5 the MFE formulation gives higher level
of approximation both in terms of continuity and precision. In the CFE
formulation the discontinuity on the nodes and the accuracy of the values
decrease quickly with the increasing of the mode number. In the light of
the previous results it is possible to draw the conclusion that with a lower
degree of approximation in the displacements there is no sensible lack in the
frequency accuracy calculation while it is possible to gain a strong increase
in the accuracy of the bending moment calculation. This increase is much
more impressive if using the same degree of approximation of the CFE for the
shape functions, ie third degree polynomials. Numerical and exact solutions
are very close in this case as �gure 2.6. This behaviour can still be recognized
in the bending moment shape mode for the 4th mode as described in �gure
2.7.

2.4.2 Time Integration

For the test of the time integration performances of the MFE method the case
of the structure presented in section 2.4.1, with simply supported ends, one
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Figure 2.6: Bending moment for the 3rd mode with four node Mixed Element.
Space coordinate (m) on abscissa and Moment on ordinate (Nm)
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Figure 2.7: Bending moment for the 4th mode with four node Mixed Element.
Space coordinate (m) on abscissa and Moment on ordinate (Nm)
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node Exact MFE CFE right CFE left

5 2.9352 2.9566 NA 2.9652
4 2.3512 2.3519 2.3614 2.3600
3 1.6534 1.6528 1.6622 1.6602
2 0.86640 0.86668 0.87646 0.87268
1 0.000000 0.000000 0.027169 NA

Table 2.3: RMS comparison of the Fast Fourier Transform for the bending
moment time series data

constant point load suddenly applied at midspan, at time t = 0, has been
chosen with the same discretization used for the modal analysis. For this
particular load con�guration an analytical solution [Paz 1985] is available
for the beam de�ection in the following form:

z(x, t) =
2P0

AcL

∞∑
n=1

[
1

ω2
sin

nπ

2
(1− cosωnt)sin

nπ

L
x

]
and for the bending moment:

m(x, t) = EI
2π2P0

AcL3

∞∑
n=1

[
n2

ω2
sin

nπ

2
(1− cosωnt)sin

nπ

L
x

]
in which ωn is the nth eigen-value. The numerical results (obtained with
the octave script dyn_solve.m revision 1.13 with iload set to 1) has been
obtained, both for the MFE and CFE method, using the classical Newmark
method, the only available in the ANSYS software. Neither numerical nor
physical damping has been used in both model. Results are showed in terms
of displacement and bending moment at the loaded point in �gure. The
bending moment of the �rst node of the last element is showed in �gure.
The time history of the numerical and exact solution are very close, almost
identical for the displacement and with some error for the bending moment.
For a better understanding of the accuracy of the numerical solutions and
for a comparison between the MFE and the CFE the RMS of the FFT of the
time history, that describe the energy content of the time series signal, has
been calculated and reported in table 2.3. The CFE data are on an element
basis so for each node the right and left element data have been considered.
Remembering that the numerical solution is always sti�er that the exact one
as it is expected the exact solution has the lower energy level. The MFE
numerical solution shows a close RMS value to the exact one respect to the
CFE method, calculated with the ANSYS software.
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Figure 2.8: Displacement of the loaded point. Time on the abscissa (sec.)
and displacement on the ordinate (m)
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Figure 2.9: Bending moment at the loaded point. Time on the abscissa (sec.)
and moment on the ordinate (Nm)
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Figure 2.10: Bending moment at the �rst node of the last element. Time on
the abscissa (sec.) and moment on the ordinate (Nm)



Chapter 3

Spatial Frame Applications of
Beam Element

Application of the �Displacement Only Method� in spatial frame requires that
rotation of element matrix and axial stress component should be accounted
for.

3.1 The column behaviour

The e�ect of the axial force has to be considered in spatial beam structures,
in this the equilibrium equation is (reference is made to �gure 3.1):

Ac
∂2u

∂t2
dx = P ∗ − P

in which:

u is the axial displacement

P is the axial force

P ∗ = P + ∂P
∂x

dx

hereafter for other symbols reference is made to section 2.2 and 2.2.1. After
some simpli�cation and with the compatibility equation the system that rules
the rod behaviour is:

P − EA
∂u

∂x
= 0

−∂P

∂x
+ Ac

∂2u

∂t2
= 0 (3.1)

55
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x

z
y

dx

P P*

Figure 3.1: Beam axial equilibrium sketch

Using the same weak formulation and �nite element approximation of the
section 2.3.1 the equation 3.1 is transformed as:∫ L

0

NjNidx · Pi − EA

∫ L

0

Nj
∂Ni

∂x
dx · ui = 0

−
∫ L

0

Nj
∂Ni

∂x
dx · Pi + Ac

∫
NjNidx · d2ui

dt2
+ (P h − bp(t))Nj

∣∣L
0

= 0

in which:

Pi value of the axial force at node i

ui value of the axial displacement at node i

Using integration by parts in the equilibrium equation, the �nal form of the
system is: ∫ L

0

NjNidx · Pi − EA

∫ L

0

Nj
∂Ni

∂x
dx · ui = 0

+

∫ L

0

∂Nj

∂x
·Nidx · Pi + Ac

∫ L

0

NjNidx · d2ui

dt2
− bp(t)Nj|L0 = 0

With the following position:

(Ki)ji =
∫ L

0
NjNidx

(Ku)ij = (Kp)ji =
∫ L

0

∂Nj

∂x
·Nidx
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Ki · p− EA ·Ku · u = 0

Kp · p + AcKi · ü = 0

in which :

p is the vector of the axial force nodal value

u is the vector of the axial displacement nodal values

Now it is possible to condensate the axial force in the matrix form:

p = EA ·Ki
−1 ·Ku · u

Kp ·Ki
−1 ·Ku · u + AcKi · ü = 0 (3.2)

where the sti�ness matrix is:

Kax = Kp ·Ki
−1 ·Ku

Considering the same shape function of section 2.3.2 the matrix relationship
for a three node element is:

L

15

 2 1 −1
2

1 8 1
−1

2
1 2

 P1

P2

P3

− EA

 −1
2

2
3

−1
6

−2
3

0 2
3

1
6

−2
3

1
2

 u1

u2

u3

 = 0

 −1
2

2
3

−1
6

−2
3

0 2
3

1
6

−2
3

1
2

 P1

P2

P3

+ AcL
1

15

 2 1 −1
2

1 8 1
−1

2
1 2

 ü1

ü2

ü3

 = 0

Eliminating the axial force from the equilibrium equation it is possible to
get:

EA

L

 7
3

−8
3

1
3

−8
3

16
3

−8
3

1
3

−8
3

7
3

 u1

u2

u3

+ AcL
1

15

 2 1 −1
2

1 8 1
−1

2
1 2

 ü1

ü2

ü3

 = 0

With similar calculations it is possible to deduce the sti�ness matrix for shape
function of di�erent polynomial degrees.

3.2 Matrix Rotation

In 2D geometry it is necessary to consider for each node two translational
Degrees of Freedom, one in the x direction and the other in the z direction,
as showed in the �gure 3.2, where a general con�guration for an element is
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Figure 3.2: DoF sketch for 2D spatial frame
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Figure 3.3: Local reference system for the Element



Mechanical Engineering PhD

Universita' Politecnica delle Marche

Pag. 59 of 109

Section 3.2

sketched. The sti�ness matrix in the global reference system (see �gure 3.2)
has to be obtained by its rotation from the local reference system (see �gure
3.3). The local sti�ness matrix is obtained coupling the column behaviour,
described in section 3.1, and the beam behaviour described in section 2.3.1
represented by the equation 2.18. For the sake of comprehension of the
following analysis it is useful to rewrite equation 2.18 with both end rotations
prescribed (the �rst equation results multiplied for EI respect to equation
2.18): 

Mi

∫ L

0
NiNjdx + MiEI

µG

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx− EI · wi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx+

− EI · bθ(t)Nj|L + EI · bθ(t)Nj|0 = 0

−Mi

∫ L

0
∂Ni

∂x

∂Nj

∂x
dx +

∫ L

0
q(x)Njdx− Ac

d2wi

dt2

∫ L

0
NiNjdx+

+ bv(t)Nj|L = 0

Along with the sti�ness matrix the load vector has to undergone the same
process of transformation too, taking into account that the load vector has
a contribution from the end rotations. This e�ect is quanti�ed by (referring
to equations 2.18, 2.19 and 2.24):

qθ = −(Kn ·Kb
−1 · θ)

It has to be considered that the vector θ has only two elements di�erent from
zero, the end rotations (again reference is made to equation 2.24) and that
the inversion of the matrix Kb has to be referred to the structure assembled
matrix.

3.2.1 Coupling Column and Bending Behaviour

To express the sti�ness matrix in an form suitable for the rotation procedure
it is worthwhile to re-arraying together both equations, 3.2 and 2.22, in the
compatibility equation:[

Ki 0
0 Kb

]
·
[

p
m

]
+

[
−EA ·Ku 0

0 −EI ·Kn

]
·
[

u
w

]
L

=

[
0

−EI · θ

]
L

(3.3)

and in the equilibrium equation:[
Kp 0
0 −Kn

]
·
[

p
m

]
L

+

[
Mi 0
0 −Mi

]
· d2

dt2

[
u
w

]
L

=

[
0

−Q− V

]
L

(3.4)

Obtaining p and m from the �rst equation:[
p
m

]
=

[
Ki 0
0 Kb

]−1

·
([

EA ·Ku 0
0 EI ·Kn

]
·
[

u
w

]
L

+

[
0

−EI · θ

]
L

)
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it is possible to express the equilibrium equation in the displacement nodal
value unknowns:[

Kp 0
0 Kn

]
·
[

Ki 0
0 Kb

]−1

·

·
[

EA ·Ku 0
0 EI ·Kn

]
·
[

u
w

]
L

+

+

[
Mi 0
0 Mi

]
· d2

dt2

[
u
w

]
L

=

[
0

Q + V

]
L

+

+

[
Kp 0
0 Kn

]
·
[

Ki 0
0 Kb

]−1 [
0

EI · θ

]
L

Re-arraying the nodal displacement vector as follow (for an n nodes ele-
ments):

UL =


u1

w1
...

un

wn


The equilibrium equation results:

KL · UL + ML ·
d2

dt2
UL = Q + KR ·G ·Qθ (3.5)

in which (for the sake of simplicity a three node element has been chosen):

Qθ =

[
θ1

θn

]

G =


0 0

EI 0
...

...
0 −EI



KL =


(Kax)11 0 (Kax)12 0 (Kax)13 0

0 (Kfl)11 0 (Kfl)12 0 (Kfl)13

(Kax)21 0 (Kax)22 0 (Kax)23 0
0 (Kfl)21 0 (Kfl)22 0 (Kfl)23

(Kax)12 0 (Kax)12 0 (Kax)33 0
0 (Kfl)31 0 (Kfl)32 0 (Kfl)33

(3.6)
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the same arrangement has to be used for the mass matrix MLand for the
node rotation coe�cient matrix. In the analysis of frame structures, respect
to the analysis developed for supported beams in section 2.3.3.1, the minus
sign of the left node rotation and EI have to be moved to the rotation coe�-
cient matrix, KR, due to the assembling process of the rotation equilibrium
equation of the frame joint. The rotation coe�cient matrix, KR, results:

KR =


(Kp ·Ki

−1)11 0 (Kp ·Ki
−1)12

0 (Kn ·Kb
−1)11 0

(Kp ·Ki
−1)21 0 (Kp ·Ki

−1)22

0 (Kn ·Kb
−1)21 0

(Kp ·Ki
−1)12 0 (Kp ·Ki

−1)12

0 (Kn ·Kb
−1)31 0

...

0 (Kp ·Ki
−1)13 0

(Kn ·Kb
−1)12 0 (Kn ·Kb

−1)13

0 (Kp ·Ki
−1)23 0

(Kn ·Kb
−1)22 0 (Kn ·Kb

−1)23

0 (Kp ·Ki
−1)33 0

(Kn ·Kb
−1)32 0 (Kn ·Kb

−1)33


Ki and Kb must result from the assembling process of the elements belonging
to the stretch under analysis. In the previous matrix de�nitions the following
position has been made:

Kax = Kp · (EA ·Ki
−1) ·Ku

Kfl = Kn · (EI ·Kb
−1)Kn

Equation 3.5 is the building block for the assembling process, necessary for
the solution of 2-D frame structures.

3.2.2 Local to Global system Transformation

Considering the transformation between the local and global reference sys-
tems, the relationship connecting the local displacements components of the
j node to global ones reads:

ULj = R · UGj

in which the rotation matrix is:
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R =

 cos ˆxLxG cos ˆxLyG cos ˆxLzG

cos ˆyLxG cos ˆyLyG cos ˆyLzG

cos ˆzLxG cos ˆzLyG cos ˆzLzG


Applying the transformation to the vector of displacements of the �nite ele-
ment gets (considering for simplicity a three node element): UL1

UL2

UL3

 =

 R 0 0
0 R 0
0 0 R

 uG1

UG2

UG3


In a more concise form:

UL = T · UG (3.7)

in which:

T is the transformation matrix

Thus for a plane-structural problem the transformation matrix is:

T =



cosβ sinβ 0 0 0 0 0 0 0
−sinβ cosβ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 cosβ sinβ 0 0 0 0
0 0 0 −sinβ cosβ 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 cosβ sinβ 0
0 0 0 0 0 0 −sinβ cosβ 0
0 0 0 0 0 0 0 0 1


If a 2D element is considered as in �gure 3.2:

ULj local vector of node j displacements

(
uLj

wLj

)

UGj global vector of node j displacements

(
uGj

wGj

)
Paying attention to the 2D case and considering β the angle between the xL

and the xG axis the transformation equation becomes:

ULj =

[
cosβ sinβ
−sinβ cosβ

]
UGj
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Using the orthogonality feature of the rotation matrix results:

UGj =

[
cosβ −sinβ
sinβ cosβ

]
ULj

Applying the transformation from global to local of the vector of displace-
ments for the whole �nite element gets:

uL1

wL1

uL2

wL2

uL3

wL3

 =


cosβ sinβ 0 0 0 0
−sinβ cosβ 0 0 0 0

0 0 cosβ sinβ 0 0
0 0 −sinβ cosβ 0 0
0 0 0 0 cosβ sinβ
0 0 0 0 −sinβ cosβ




uG1

wG1

uG2

wG2

uG3

wG3


here

T =


cosβ sinβ 0 0 0 0
−sinβ cosβ 0 0 0 0

0 0 cosβ sinβ 0 0
0 0 −sinβ cosβ 0 0
0 0 0 0 cosβ sinβ
0 0 0 0 −sinβ cosβ

 (3.8)

Then applying the transformation relationship to the sti�ness matrix results:

KG = T T ·KL · T (3.9)

The same transformation of equation 3.9 is applied to the mass matrix:

MiG = T T ·MiL · T (3.10)

The frame rotation, mathematically described in equations 3.9 and 3.10,
has to be applied to the element characteristic quantities before the assem-
bling process will be performed. To this aim bring back equation 3.5 and
applying to it the rules of equation 3.7 it reads:

KL · T · UG + ML · T · d2

dt2
UG = T ·QG + KR ·G ·Qθ

then multiplying both sides for T T :

T ·KL · T · UG + T ·ML · T · d2

dt2
UG = T T · T ·QG + T T ·KR ·G ·Qθ
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and �nally using the de�nition of equation 3.9 and the relation T T · T = I:

KG · UG + MG · d2

dt2
UG = QG + T T ·KR ·G ·Qθ (3.11)

Here in a 2D condition the end rotation vector undergoes an identity trans-
formation during reference frame rotation.

The equation 3.11 allows for using a standard element sti�ness, mass
matrix and load vector assembling process only for the end rotations contri-
bution some attention has to be payed.

3.2.2.1 End Rotations Condition

Considering a linear structure with constant cross section, the matrix product
T T ·KR is identical for two adjacent elements of the structure. Moreover the
vector of end rotations has the following form (where the adjacent elements
are labeled i and j with the common node l):

G·Qθj =


0 0

EI 0
...

...
0 −EI


[

θh

θl

]
G·Qθi =


0 0

EI 0
...

...
0 −EI


[

θl

θm

]
(3.12)

as a consequence the assembling process will cancel out the contribution of
the element common end rotations but the case of element with di�erent
cross section and �T� joint con�gurations. In the latter cases the matrix
product T T · KR is di�erent for two adjacent elements although the com-
mon node rotation is identical, as a consequence the joint (or discontinuity
node) rotations will still appear in the right hand member of equation 3.11,
unknown at the solution stage. For this reason some other conditions have
to be introduced to account for the node rotations.

The rotational equilibrium of the �joint� is the condition that makes the
system 3.11 solvable.

To this aim, �rstly it is necessary to account for the global components
of the node displacements, in a manner similar to the one used for equation
3.5, introducing the following position:

s =


p1

m1
...

pn

mn


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to re-array the coe�cient matrix of equation 3.3 :

KS · sL + KD · UL = −G ·Qθ (3.13)

Considering a three node element the matrix KS and KD are as follow:

KS =


(Ki)11 0 (Ki)12 0 (Ki)13 0

0 (Kb)11 0 (Kb)12 0 (Kb)13

(Ki)21 0 (Ki)22 0 (Ki)23 0
0 (Kb)21 0 (Kb)22 0 (Kb)23

(Ki)12 0 (Ki)12 0 (Ki)33 0
0 (Kb)31 0 (Kb)32 0 (Kb)33



KD =


EA(Ku)11 0 EA(Ku)12

0 EI · (Kn)11 0
EA · (Ku)21 0 EA(Ku)22

0 EI · (Kn)21 0
EA · (Ku)12 0 EA(Ku)12

0 EI · (Kn)31 0

...

0 EA · (Ku)13 0
EI · (Kn)12 0 EI · (Kn)13

0 EA · (Ku)23 0
EI · (Kn)22 0 EI · (Kn)23

0 EA · (Ku)33 0
EI · (Kn)32 0 EI · (Kn)33


It is important to highlight that the previous matrix KS and KD must be
assembled for each node belonging to the stretch under analysis to get the
complete form 3.13. Equation 3.13 expresses the internal action, Mx and
P , as a function of the deformation (U and θ) of the element. Considering
�gure 3.4 the bending moment exerted on joint Jn is a function of the vertical
displacements and rotation of the orizontal stretch between Jn and Jm. To
calculate the moment on joint Jn the deformation of each element on the
orizontal stretch have to be accounted for. Then assembling matrixes KS

and KD and recalling equation 3.12 only joint rotations, θJnand θJm , give rise
to a contribution di�erent from zero. The resulting matrix equation reads
(here the matrix KS and KD resutlt from the assembling performed on the
element of the stretch from Jn to Jm):

sL = −K−1
S · (KD · T · UG + G ·Qθ) (3.14)

in which the global compoments of the displacements have been used. From
relation3.14 the row correspong to the moments acting on the joints of the
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Jn
θ θl

Jn
Jm

JkJl

Jθ
mθ θkm

Figure 3.4: Example sketch of a frame structure

structure has to be cut o� (for the sake of semplicity the subscript �L�,
referring to the local component, has been dropped and substituted by the
vector component number and by the label of the joint which the moment
acts on and the stretch which belongs to) :

(sJm)s = −(KS)−1
2j · (KD)jmTml · (UG)l − (KS)−1

22 · (Qθ)1 + (KS)−1
2k · (Qθ)2

(sJm)s = −(KS)−1
kj · (KD)jmTml · (UG)l − (KS)−1

k2 · (Qθ)1 + (KS)−1
kk · (Qθ)2

j, m, l = 1, 2, ......k (3.15)

in which k is the number of the nodes in the stretch �s�. On the right end
of the element the internal positive bending moment laied in the negative
side of global reference system, for this reason the second equation have to
be multiplyed by −1:

(sJm)s = −(KS)−1
2j · (KD)jmTml · (UG)l − (KS)−1

22 · (Qθ)1 + (KS)−1
2k · (Qθ)2

(sJm)s = +(KS)−1
kj · (KD)jmTml · (UG)l + (KS)−1

k2 · (Qθ)1 − (KS)−1
kk · (Qθ)2

Getting equation 3.15 for each stretch that converge to the joint it is possible
to write down the rotational equilibrium condition (referring is made to the
example �gure 3.4):

(sJn)1 + (sJn)2 = 0 (3.16)

Adding, for each �joint�, the equilibrium equation 3.16 to the system of
equations 3.11 the solution of the structural problem can be obtained using
the usual methods for inversion of the system of algeabric equations. When
the displacements and joint rotations of the structure has been obtained the
moment should be calculated using the �rst equation of the system 3.15.
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1

1

F

Figure 3.5: Sketch of the Frame geometry

3.3 Numerical Example

The MBEM (Mixed Beam Element Method) has been tested versus the stan-
dard Finite Element Methods using its implementation in the general purpose
package ANSYS. A simple frame geometry has been used with unitary di-
mension as represented in �gure 3.5, with a suddenly applied unitary force at
time t = 0. The frame characteristics are listed in table 3.1. The element size
used was ∆h = 0.3333 with a total of 10 node for both model and 3 element
for the MBEM and 9 for the ANSYS model. The results are reported, in

E 4.6 · 109

ρ 1.6 · 103

b 0.1
h .7 · 10−2

Table 3.1: Mechanical and geometric characteristic of the cross section of the
frame
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�gure 3.6, in terms of horizontal displacements and bending moments of the
upper left node. Both �gure show how the MBEM gets better results above
all in term of bending moment that for the ANSYS model is discontinuos at
the node, two values have to be reported.

The dynamic displacements oscillates about the value results from the
statical application of the load. Such value is 0.019015 the average value
of the dynamic analysis is 0.018998 with a percent error of 0.09% for the
MBEM while for the ANSYS model the average value is 0.018635 with a
percent error of 1.998%. This kind of result is more stressed for the bending
moment which, in the ANSYS model, is discontinuos while in the MBEM is
continuos and with an error of 0.773% on the average value.
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Figure 3.6: Time history of the ANSYS and Mixed-FE model solutions at
the upper-left node



Bibliography

[Auricchio 1994] F. Auricchio, R.L. Taylor, �A shear deformable plate ele-
ment with an exact thin limit�, Computer Methods in Ap-
plied Mechanics and Engineering, vol 118,pg 393-412, 1994

[Kwon 1997] Y. W. Kwon, H. Bang, �The Finite Element Method using
Matlab�, CRC Press 1997

[Paz 1985] M. Paz, �Structural Dynamics Theory & Computation�,
Van Nostrand Reinhold New York, 1985

[Landau 1979] L. D. Landau, E. M. Lifsits, �Fisica teorica/teoria
dell'elasticità�, Editori Riuniti, Roma 1979

[Hilber 1976] Hans M. Hilber, �Analysis and design of numerical integra-
tion method in structural dynamics�, College of engineering
University of California, Report No. EErc 76-29 November
1976

70



Part II

The Experimental Data
Post-Processing

71



Chapter 4

Laboratory Test Normal Surface
Displacement Determination

4.1 Introduction

To fully test the algorithm for the defect detection it is necessary to have use
beam/shell with di�erent position and size of defects. Usually this goal is
get laying te�on made spot in the resin region of the layered structure. This
kind of arrangement is not able to represent the di�erent level of discontinuity
usually present in layered structures.

On the contrary it is very di�cult to realize controlled delamination defect
in laboratory experiments, moreover considering the fact that to fully test
the post-processing method di�erent length and depth position of the defect
have to be realized.

To overtake these problems a virtual laboratory is realized that has been
validated with experimental data gathered from aluminum-resin layered beams.
After the validation process the virtual laboratory has been used to supply
the data over which the post-processing model has been run considering dif-
ferent length and depth of the defects.

4.2 Sample building

Aluminum bars sized 15mm x 2mm and 192mm length are used. In order to
build a composite structure two bars are glued by epossydic resin E227 that
is the standard glue for these applications. The micro-spheres were added to
increase the density and to avoid air bubbles inside the resin. Two samples
were built. The samples were made like a sandwich, that means the resin
between two bars was continuous. The epossydic resin was left stand for 48

72
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Figure 4.1: Sample Bar

hours at room temperature.
The thickness of resin was measured in order to have this parameter for

the numerical model. Its constant thickness was not guaranteed, because the
resin was spread by hand. The direct measurement was not possible, so the
bar thickness was subtracted from the total one.

In this way the measurement uncertainty is compound by the error on
the sandwich thickness measurement and the bar thickness measurement. In
Figure 4.2, thickness measurement points are shown. Several points were
chosen along the symmetric axe and along the edges (higher and lower) in
order to have not only the resin thickness each 10mm, but also to check the
�atness errors. The longitudinal sections of resin was computed and shown
in Figure 4.3.

It is possible to note, the outlines of curves are not regular, but that was
expected as aforementioned, because the resin was handily spread. In the
contrary, the �atness error was negligible. So it is possible to conclude the
resin thickness is variable along the longitudinal section and constant along
the cross section (average variation is less than 0.01mm, that means 0.067%
of the whole resin thickness). This is a great result, because it means the
numerical model can be studied in 2D. Considering the longitudinal mea-
surements, the maximum error is 10% for sample 1 and lower for the other
sample. That means, if this value is taking in account it is possible to model
the resin thickness like constant. So the mean thickness were computed as
following:

• 0.41 mm for sample 1;



Mechanical Engineering PhD

Universita' Politecnica delle Marche

Pag. 74 of 109

Section 4.3

(a) Measurement thickness points

Figure 4.2:

• 0.43 mm for sample 2.

4.3 measurement chain

Measurement chain was composed by the equipments shown in Figure 7 and
they are: instrumented hammer (named �woodpecker�) with supplier that
permits to repeat automatically the impulses; load cell ampli�er; Scanning
Laser Doppler Vibrometer (SLDV); computer; test rig. Samples were laid on
the foam rubber that permits to consider the sample in free-free constraint
system (as well demonstrate in the next section) The load cell (on the hammer
head) output signal, through the ampli�catory arrives in the channel A of
the controller and it is used for many tasks:

• reference signal to get the input load condition for FEM validation and
to compute the FRF;

• trigger for scanning;

• to know the real instant of force applied on the sample.
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(a) Bar 1

(b) Bar 2

Figure 4.3: Resin thickness of sample bar



Mechanical Engineering PhD

Universita' Politecnica delle Marche

Pag. 76 of 109

Section 4.3

Figure 4.4: measurement chain
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Figure 4.5: Measurement grid

The out of plane speed of the surface it is measured by the SLDV. The
pick-up grid is showed in �gure 4.5

The input force is applied in the middle of the sample and an area greater
than that of the hammer is subtracted from the grid to avoid to pick up the
hammer movement.



Chapter 5

The Finite Element Model

5.1 Introduction

A full 2D model using solid elements for the ply and contact element for
the delamination has been used. For the contact simulation two di�erent
elements has been chosen the surface-to-point and the point-to-point.

5.2 The Elements

The Finite Element Model has been realized using the general purpose Finite
Element code ANSYS. The beam has been considered under a plane stress
state in the x − y coordinate plane. for this reason the ANSYS element
PLANE42, a four node isoparametric Finite Element (see �gure 5.1), has
been used. The delamination surface has been modeled using the contact
surface element CONTAC48 that can describe a general contact between a
set of points and a surface (see �gure 5.2). The shear and normal interaction,
between the two surface of the delamination, has been modeled using spring
elements featuring multi-linear force-displacement curve like the one reported
in �gure 5.3. The mesh has been obtained using an element size equal to
2.0 · 10−3m, the mesh is showed in �gure 5.4.

Figure 5.1: Four node isoparametric plane stress element sketch
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Figure 5.2: Contact surface element sketch

Figure 5.3: Multi-linear spring element

Figure 5.4: Mesh of the FE model
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5.3 Typical analysis results

To test the model some runs has been performed by imposing displacements
close to the right end of the beam. The input function is a monocromatic
signal. Two di�erent cases have been considereds with 1.0 · 103Hz and 1.0 ·
104Hz frequency exitation. Two samples of the resulting stress �elds are
reported in �gure 5.5. The results show very well how the defect perturb
the well known beam stress �eld resulting in a di�erent cross section sti�ness
that acts inducing a discontinuity in the displacement distribution on the
surface.
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(a) case (a)

(b) case (b)

Figure 5.5: τxy stress �eld for defect depth of 4.0 · 10−3 and defect length
2.0 · 10−2(a) and 4.0 · 10−2(b)



Chapter 6

Experimental vs Virtual
Laboratory results

To test the performances of the virtual laboratory the results gathered from
the Polytec devices has been compared with the ones obtained from the
numerical simulation.

6.1 The Input Force

To reproduce the input signal of the laboratory experiments as close as pos-
sible a rectangular PSD with the same overall energy of the input signal has
been used in the FEM simulation.

The time history was obtained reconstructing the signal from the rect-
angular PSD and from the hypothesis of a random equi-distribution of the
phase using the following formula:

F (t) =
N∑

j=1

√
4S0(ωj)∆ω · cos(ωj · t− θj)

in which:

S0(ωj) is constant and equal to the height of the rectangle

∆ω is the step in the frequency domain of the PSD data

θj is the phase

S0 has been calculated imposing the same area for the measured PSD data
and the rectangular PSD with the upper limit at 5 · 103Hz.
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k0 · L 0.0

k1 · L 4.730
k2 · L 7.853
k3 · L 10.996
k4 · L 14.137
k5 · L 17.279

Table 6.1: Boundary condition coe�cient for eigenfrequencies calculation

6.2 Experimental results

A �rst level of characterization was done comparing the modal frequencies
obtained by using the FRF of the output, the structural dynamics theoretical
value and the ANSYS FEM model. A second, more accurate comparison
was done inputting to the FEM model the force deduced by the procedure
described in section 6.1 and comparing the FFT of the measured velocities
with the FEM ones.

6.2.1 Eigen-frequencies comparison

The theoretical beam model frequencies result from the following relation:

fi =
k2

i · L2

2π

√
EI

ρAL4
(6.1)

in which ki is a coe�cient accounting for the di�erent boundary conditions of
the beam. In the present case of a free-free beam the values can be deduced
from table 6.1 from [Paz 1985]. The second order moment and the area of
the section are calculated using the relation:

I = 2 · b ·
(

1

12
h3

a + ha ·
(ha + hr)

2

4

)
+

1

12
· Er

Ea

h3
r

ρA = ρab · ha + ρrb · hr

in which:

Ea = 7 · 1010 Aluminum Young Modulus

ρa = 2744 Aluminum density
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Mode Theoretical FEM Experimental

1 585.28 585.35 575
2 1613.4 1602.3 1550
3 3162.8 3108.8 2981

Table 6.2: Comparison between theoretical, experimental and FEM eigen-
frequencies (Hz) for beam 1

Mode Theoretical FEM Experimental

1 590.08 588.34 587.5
2 1626.6 1610.1 1600
3 3188.8 3122.9 3075

Table 6.3: Comparison between theoretical, experimental and FEM eigen-
frequencies (Hz) for beam 2

Er = 8 · 109 Resin Young Modulus

ρr = 1860 Resin density

ha = 2 · 10−3 Aluminum layer height

hr = 4 · 10−4 Resin layer height

Using the above values the �rst three eigen-frequencies are listed in table
6.2 for the beam number 1 and in table 6.3 for the beam number 2. The
experimental data are gathered from the peaks Frequency Response Function
of the Polytec instrument.

It is possible to draw the conclusion of a neat convergence between the
di�erent models. The ability of the full 2D beam FEM model, to simu-
late the second order e�ects of the beam section deformation (release of the
Euler-Bernoulli hypothesis). accounts for the little di�erences in the eigen-
frequencies and for the lower sti�ness of the FEM and Experimental system.
A very good level of agreement can be found between the theoretical (both
beam theory and FEM model) and the experimental one, in fact the higher
values of inaccuracy is 4.1% for the third frequency of the beam 1.

6.2.2 Frequency Response to Impulsive Input

A second more complete comparison has been done performing simulations,
using the FEM model, that should reproduce the laboratory vibrations of the
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Node x coordinate (m)

13 0.013
52 0.052
99 0.099
137 0.137
175 0.175

Table 6.4: Nodes position for FFT comparison

beam 1 and 2. The input has been reproduced using the algorithm described
in section 6.1. The results have been compared in terms of z-direction veloc-
ity at 5 di�erent points along the axis of the beam. The velocity output of
the FEM simulation has been compared with the velocities measured with
the SLDV instrumentation in terms of the FFT of the velocities in the �z�
direction. The results are showed in �gures 6.1, 6.2, 6.3, 6.4 and 6.5. The
position of the nodes is reported in table 6.4. All �gures show a good agree-
ment between experimental and FEM data both in term of frequencies and
amplitude.

The FEM model is able to reproduce the beam behaviour at low and high
frequencies showing the e�ects of the two symmetrical eigen-modes (the �rst
and the third) and the e�ect of the free constraint for the frequency that
tend to zero.

The same agreement can be showed in term of amplitude where there is
an acceptable convergence in the FEM results to the experimental one. The
relative amplitude of the third mode to the �rst one of the experimental data
respect to the numerical ones is due to the constant Power Spectral Density
of the input force used in the numerical analysis and to the inaccuracy of the
hammer position.

These results allow to state that it is possible to use the FEM model
to reproduce experimental surface measurement for test the post-processing
unbalanced force method.
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(a) Beam 1

(b) Beam 2

Figure 6.1: Comparison for FEM and Experimental FFT of the z Velocity of
node 13
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(a) Beam 1

(b) Beam 2

Figure 6.2: Comparison for FEM and Experimental FFT of the z Velocity
for node 52
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(a) Beam 1

(b) Beam 2

Figure 6.3: Comparison for FEM and Experimental FFT of the z Velocity
for node 99
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(a) Beam 1

(b) Beam 2

Figure 6.4: Comparison for FEM and Experimental FFT of the z Velocity
for node 137
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(a) Beam 1

(b) Beam 2

Figure 6.5: Comparison for FEM and Experimental FFT of the z Velocity
for node 137
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Chapter 7

Unbalanced Force Mapping
Method

In the previous chapters various levels of accuracy have been presented in
the description of sti�ness for beams and plates and how the di�erences
in the mathematical modeling lead to di�erent level of error between the
physical processes and the numerical approximation. This kind of di�erence
could be used to post-processing the experimental results to connect the
di�erence in the responses of di�erent areas, of the structure under testing,
to di�erent characteristics of the areas. In a more straightforward manner
the di�erence between a particular mathematical model displacement output
and the experimental results could say how much and where the sti�ness,
assumed by the model, is actually distributed in the physical system.

7.1 Unbalanced Force Mapping Method (UF2M)

The Unbalanced Force Mapping Method (called hereon UF2M) uses the dif-
ference between the surface traction distribution, determined post-processing
the experimentally measured displacements and the actual traction distribu-
tion on the sample surface to asses where the sti�ness of the structure move
aside from its average.

To accomplish the previous task the theory, developed in the previous
chapter, has been used. For simplicity purpose but without lacking in gener-
ality it has been applied to beam layered structure. The governing equations
using the mixed approach reads:{

Mx

E
− 1

µG
∂2Mx

∂x2 + ∂2w
∂x2 = 0

∂2Mx

∂x2 + q(x)− Ac
∂2w
∂t2

= 0
(7.1)
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in which:

w is the transverse beam displacement in the z direction

Mx is the bending moment in the x− z plane

q(x) is the applied external load per unit length

Ac is the mass per unit length of the beam

Considering that the test for the defect detection shall be performed under
dynamic condition and with the analyzed area free from external force the
previous equation should modi�ed as follow:{

Mx

E
− 1

µG
∂2Mx

∂x2 + ∂2w
∂x2 = 0

∂2Mx

∂x2 − Ac
∂2w
∂t2

= 0
(7.2)

Under the hypothesis that the specimen follows the Timoshenko Beam The-
ory it is possible to assert:

introducing into equation 7.2 the displacement gathered from the
Laser Doppler Velocimetry measurement as the vector w the right
hand term shall result in a zero vector (but experimental uncer-
tainty); if, for any reason, the right hand term will be di�er-
ent from zero it means that in the area in which that happens is
present an anomaly in the specimen.

Here zero vector means values inside the experimental uncertainty assumed
even spatially distribuited on the structure. Due to the fact that the presence
of delamination defects will result in a variation of the beam middle surface
curvature the errors introduced by the numerical di�erentiation in equations
7.2 could be of the same order of magnitude of the right hand values unbal-
anced force. A weighting procedure similar to the one used for the Mixed
Finite Element formulation will help to keep the di�erentiation error low.
The resulting system of equations reads:

Mi

EI

∫ L

0
NiΦjdx + Mi

µG

∫ L

0
∂Ni

∂x

∂Φj

∂x
dx− ŵi

∫ L

0
∂Ni

∂x

∂Φj

∂x
dx+

+ bθ(t)Φj|0 = Uj(t)

−Mi

∫ L

0
∂Ni

∂x

∂Φj

∂x
dx− d2ŵi

dt2

∫ L

0
AcNiΦjdx+

+ bv(t)Φj|L = Uj(t)

(7.3)

in which:
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ŵi displacement measured at grid point i

Ui(t) unbalanced force at grid point i

Φj j − th weighing function

the experimental data are supplied in the frequency domain so the previous
equation will transformed as follow:

Mi

EI

∫ L

0
NiΦjdx + Mi

µG

∫ L

0
∂Ni

∂x

∂Φj

∂x
dx− w̄i(ω)

∫ L

0
∂Ni

∂x

∂Φj

∂x
dx+

+ bθ(ω)Φj|0 = Ūj(ω)

−Mi

∫ L

0
∂Ni

∂x

∂Φj

∂x
dx + ω2w̄i(ω)

∫ L

0
AcNiΦjdx+

+ bv(ω)Φj|L = Ūj(ω)

(7.4)

in which:

w̄i(ω) is the Fourier Transform of the measured displacements

Ūj(ω) is the Fourier Transform of the unbalanced forces

The weighting function Φj at its lowest level of approximation can be chosen
equal to the shape function Nj. In this way the resulting matrix equation of
7.4 is:

−K · w̄(ω) + ω2 Mw· w̄(ω) = Ū(ω) (7.5)

in which:

w̄(ω) is the vector of the measured displacements

Ū(ω) is the vector of the unbalanced forces

Equation 7.5 is used to post-processing the experimental data to determine
the potential areas in which anomalies can be present.



Chapter 8

Test of UF2M Performances

8.1 Introduction

In this chapter the Virtual Model is used to get the surface displacement
measurement to test the Unbalanced Force Method. Various delamination
lengths at various depths and with di�erent forcing frequencies have been
considered to asses the ability of the UF2M to detect the position and length
of the anomalies in the structure.

8.2 The Virtual Laboratory

The Finite Element Model described in section 5 has been used to produce
the time history of the surface displacements �eld. The frequency response
of such �eld has been assumed as the experimental pick up of a surface
measurement technique like the LDV. As a virtual laboratory set up a layered
beam has been chosen made of 7 layer of the same material bonded together
by a suitable resin. Table 8.1 contains the main geometrical and mechanical
data assumed for the beam. Three di�erent delamination lengths has been
considered with two di�erent depth respect to the measuring surface. Two

length 2.0 · 10−1m
Young modulus 4.6 · 109Pa

density 1.9 · 103 Kg
m3

single layer thickness 1.0 · 10−3m
number of layers 7

Table 8.1: Mechanical and geometrical characteristic of the layered beam
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wave division 16
N th acq. periods 8

S0 0.1 · 10−6m
Piezo Size 5.0 · 10−3m

Piezo Position 1.8 · 10−1m
α 0.25
δ 0.5
ξ 0.0

Table 8.2: Acquisition and integration parameters

di�erent monochromatic inputs has been considered for each case with the
acquisition lasting for 8 period. Table 8.2 lists the more relevant parameters
used in the Finite Element simulation for the production of the data used as
laboratory results. The whole tests has been coded using four digit:

1st is for the input frequency

2nd for the number of periods of acquisition

3rd for the delamination depth

4th is for the delamination length

The cases performed are summarized in Table 8.3. The �Defect depth� col-
umn report the y coordinate of the plane containing the defect, so higher
value is for more super�cial defects. In the following the response in the
measured surface displacement �eld and in the Unbalanced Force obtained
from those measurements will be described.

8.3 The Displacements Frequency Response

As it is expected, above all at low frequencies, the measurements of the sur-
face displacements of defected and undefected samples, show no di�erences
that could be related to the geometric position of the defects. Such be-
haviour is con�rmed by the results showed in �gures 8.1, 8.2 and 8.3. Here
the FFT has been applied to the time varying di�erences between the unde-
fected case displacements and the defected ones, normalized respect to the
maximum displacement measured in the undefected beam. The �gures re-
port in a 2D mapping the spatial variation along the layered beam of such
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Code Defect length Defect depth
(Depth over the bottom plane)

Load frequency

doe1823 4.0 · 10−2 5.0 · 10−3 1.0 · 103

doe1821 2.0 · 10−2 5.0 · 10−3 1.0 · 103

doe1822 0.8 · 10−2 5.0 · 10−3 1.0 · 103

doe0823 4.0 · 10−2 5.0 · 10−3 1.0 · 104

doe0821 2.0 · 10−2 5.0 · 10−3 1.0 · 104

doe0822 0.8 · 10−2 5.0 · 10−3 1.0 · 104

doe1833 4.0 · 10−2 4.0 · 10−3 1.0 · 103

doe1831 2.0 · 10−2 4.0 · 10−3 1.0 · 103

doe1832 0.8 · 10−2 4.0 · 10−3 1.0 · 103

doe0833 4.0 · 10−2 4.0 · 10−3 1.0 · 104

doe0831 2.0 · 10−2 4.0 · 10−3 1.0 · 104

doe0832 0.8 · 10−2 4.0 · 10−3 1.0 · 104

Table 8.3: Codes and relevant parameter

Figure 8.1: Di�erences (as % on the max displacement of the undefected
beam) in the Frequency Response of the undefected beam and the defected
ones with a defect length of 4.0 · 10−2
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Figure 8.2: Di�erences (as % on the max displacement of the undefected
beam) in the Frequency Response of the undefected beam and the defected
ones with a defect length of 2.0 · 10−2

Figure 8.3: Di�erences (as % on the max displacement of the undefected
beam) in the Frequency Response of the undefected beam and the defected
ones with a defect length of 0.8 · 10−2
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FFT in term of percentage of the maximum displacement. The �gures show
a classical pattern of stationary waves with some di�erences in the ampli-
tude values that cannot have any immediate correlation with the geometrical
position of the defects.

8.4 The Unbalanced Force Calculation

From the surface displacement Fast Fourier Transform it is possible to calcu-
late the Unbalanced Force (hereon UF) FFT over the beam length according
to the equation of section 7.1.

The structure is excited in a localized area, as a consequence in the area
other than the loaded the dynamic equilibrium equation holds stating that
�the resultant of the inertial force and the elastic force has to be zero�. The
method returns the value of the nodal force, in Newton, exceeding the dy-
namic equilibrium.

Introducing the frequency component amplitude of the measured dis-
placement in the equation 7.2 it is possible to get the nodal values of the UF
in term of frequencies.

If the structure has a uniform distribution of its mechanical and geomet-
rical characteristics the UF distribution will be constant, but the area where
the UF goes away from the average value the presence of a anomaly is de-
tected. The average value of the UF takes into account for the mathematical
model inaccuracy too.

In the following �gure a 2D mapping of the frequency values of the UF
are reported allowing to determine the position and the frequency where the
UF go away from the average value. Post-processing the data the results
obtained for cases doe1823 and doe0823 are showed in �gure 8.4. The UF
Frequency Response distribution shows very clear where the UF are di�erent
from the average and in addition, due to the large length of the defects, a
peak is presents at the both ends of the delamination. The same results is
present in the cases doe1821 and doe0821 where in the low frequency case
there is a broader frequency distribution of the UF signal in the defected area.
The same pattern is present in the cases doe1822 and doe0822, reported in
�gures 8.6. Here a decrease in the absolute values of the UF is present
due to the small amount of the defect length. Some di�erencies appear in
the higher excitation frequency (10000 Hz) cases. Here some conditions are
present in which the method is unable to give rise to peak values that account
for anomalies. These conditions appear for di�erent frequencies and defect
length. In �gure 8.7 the higher frequency case and in �gure 8.9 the lower
frequency one give rise to no evidence of anomaly. Instead in �gure 8.8 the
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(a) 1,000 Hz forcing frequency

(b) 10,000 Hz forcing frequency

Figure 8.4: Frequency Spectrum for defect length of 4.0 · 10−2 and depth of
5.0 · 10−3
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(a) 1000 Hz forcing frequency

(b) 10,000 Hz forcing frequency

Figure 8.5: Frequency Spectrum for defect length of 2.0 · 10−2 and depth of
5.0 · 10−3
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(a) 1,000 Hz forcing frequency

(b) 10,000 Hz Forcing frequency

Figure 8.6: Frequency Spectrum for defect length of 0.8 · 10−2 and depth of
5.0 · 10−3
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(a) 1,000 Hz forcing frequency

(b) 10,000 Hz forcing frequency

Figure 8.7: Frequency Spectrum for defect length of 4.0 · 10−2 and depth of
4.0 · 10−3
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(a) 1,000 Hz forcing frequency

(b) 10,000 Hz forcing frequency

Figure 8.8: Frequency Spectrum for defect length of 2.0 · 10−2 and depth of
4.0 · 10−3
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same pattern of the lower frequency case (1000 Hz) is showed. For a better
understanding of the overall performance of the method a graph is reported
with the power density of the frequency signal of the unbalanced force. The
results are repoirted in �gure 8.10 for the whole length of the beam and for
the no-load are in term of the spatial distribution of the energy of the FFT
of the UF. It is evident that the area of delamination is clearly characterized
by a higher amount of the powere density.

8.5 Conclusion

As previously stated the method is a local method, its goal is to detect the
area in which is high the chance of presence of discontinuous geometrical
or mechanical characteristic. The expected pattern is a uniform random
distribution of unbalanced force with the presence of high peak value exactly
over the extention of the defected are.

This is exactly what is represented in the graphs of the section 7.1 in
which a uniform random value is present which represents the moving of the
mathematical model away from the physical one. Along with this pattern a
peak values area is present exactly over the delamination length.

The defected area is very well found out in the case of delamination at
1.5mm from the neutral plane. The unbalanced force �noise� value is always
less then 20% of the average peak value. A maximum in the peak value is
present at both ends of the area where the discontinuity, due to the start
in the delamination, gives rise to higher unbalanced forces. In the inner
area the peak are less evident because the ply, over the delamination, tries
to conform to the thin/thick plate model rules, although according to the
di�erent characteristics.

This kind of pattern ensure a better detection performances of the method
highlighting a characteristic shape of the unbalanced spectrum that easily
bring back to the presence of delamination.

The case of lower distance from the neutral axis (0.5mm from the neutral
axis) presents some odd results. This inconsistencies are clearly due to the
presence of delamination in the null bending strain area. In fact, in cases
doe1832 and doe0833, no patterns that could bring back to delamination
defect are present. The �rst case is with higher excitation frequency and the
latter with the lower one.

For all the other cases the same consideration drawn out for the more
super�cial case are applicable. the noisy value is less than the 20% of the
peak average. This de�ciency of the method is acceptable due to the fact
that vibration induced de�ection in �eld of small displacement are not able
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(a) 10,000 forcing frequency

Figure 8.9: Frequency Spectrum for defect length of and 0.8 · 10−2 depth of
4.0 · 10−3
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(a) Whole beam length

(b) Load application area excluded

Figure 8.10: Power densit yof the unbalanced force signal for the case with
depth of 4.0 · 10−3
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to highlight defect in the area of neutral axis where bending stresses are null.
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